1(a). Complete the **balanced symbol** equation for the **complete** combustion of methane.

$$CH_4 + 2..... \rightarrow CO_2 + ... \ H_2O$$

(b). Methane is obtained from the fractional distillation of crude oil.

Complete the sentences to explain why crude oil is separated by fractional distillation.

Crude oil is separated by fractional distillation because the molecules have different

.....

Larger molecules have intermolecular forces.

These intermolecular forces require more to break.

(c). Fractional distillation produces a large amount of long chain molecules.

There is a high demand for short chain molecules.

Put a round the name of the process used to produce more short chain molecules.

combustion cracking oxidation polymerisation

[1]

[3]

[2]

(d). Draw lines to connect each description with its correct structural formula.

Description

Structural Formula

Can be oxidised to a carboxylic acid

H H H H-C-C-C-H H H H

Has the general formula C_nH_{2n+2}

 $\overset{\mathsf{H}}{\underset{\mathsf{H}}{\triangleright}} = \overset{\mathsf{H}}{\underset{\mathsf{H}}{\triangleright}} \overset{\mathsf{H}}{\underset{\mathsf{H}}{\triangleright}} + \mathsf{H}$

Decolourises bromine water

H H H H-C-C-C-H H Br Br

Decolourises bromine water

 $\begin{array}{c|c} \begin{pmatrix} H & H \\ C & C \\ H & H \end{pmatrix}_{n} \end{array}$

Made in a polymerisation reaction

2. Which substance is an **unsaturated** hydrocarbon?

- A CH₄
- B C_2H_6
- \mathbf{C} C_3H_6
- D C_3H_8

Your answer [1]

3. The first member of the alkane homologous series is methane, CH_4 .

State the name of the next alkane in the homologous series, $\ensuremath{C_2H_6}.$

[1]

[4]

	ow many different in	(es) is DNA made from?		
A B C D	2 3 4 5				
You	r answer			[1	1]
5. W	hat is the functiona	l group in an alcohol	molecule?		
A B C D	-C-H -C=C- -COOH -O-H				
You	r answer			[1	1]
6(a).	Crude oil is separa	ated into different frac	ctions by fractional distilla	ion.	
Tabl	e 20.1 shows inforr	mation about three of	the molecules that are fo	und in three different fractions.	
Tabl	e 20.1				
				7	
	Molecule	Formula	Boiling point (°C)		
	Molecule nonane	Formula C ₉ H ₂₀	Boiling point (°C)	_	
				-	
	nonane	C ₉ H ₂₀	151		
Whice	nonane heptadecane octacosane	C ₉ H ₂₀ C ₁₇ H ₃₆ C ₂₈ H ₅₈	151 302	actionating column?	
	nonane heptadecane octacosane ch of these three me	C_9H_{20} $C_{17}H_{36}$ $C_{28}H_{58}$ plecules would be se	151 302 436		
	nonane heptadecane octacosane ch of these three me	C_9H_{20} $C_{17}H_{36}$ $C_{28}H_{58}$ plecules would be se	151 302 436 parated highest up the fi		
Expla	nonane heptadecane octacosane ch of these three mo	C_9H_{20} $C_{17}H_{36}$ $C_{28}H_{58}$ plecules would be se	151 302 436 parated highest up the focular size and boiling poi		_
Expla	nonane heptadecane octacosane ch of these three me ain your answer us	C ₉ H ₂₀ C ₁₇ H ₃₆ C ₂₈ H ₅₈ colecules would be se ing ideas about mole	151 302 436 parated highest up the ficular size and boiling poi		
Expla Mole	nonane heptadecane octacosane ch of these three me ain your answer us	C ₉ H ₂₀ C ₁₇ H ₃₆ C ₂₈ H ₅₈ Dilecules would be se ing ideas about mole	151 302 436 parated highest up the ficular size and boiling poi		

(b). Cracking breaks down large molecules produced in fractional distillation into more useful molecules.

The equation shows the cracking of octacosane.

$$C_{28}H_{58} \rightarrow C_{12}H_{26} + 8C_2H_4$$
octacosane dodecane molecule X

i. State the name of molecule **X**, C₂H₄.

_____<u>[1]</u>

ii. Molecule X has the general formula C_nH_{2n} .

Octacosane and dodecane are both alkanes and have a different general formula.

State the general formula of the alkanes.

_____[1]

(c). Table 20.2 shows the percentage supply and percentage demand for some of the different fractions obtained from crude oil.

Table 20.2

Fraction	Percentage supply (%)	Percentage demand (%)		
LPG	2	4		
petrol	5	23		
naphtha	8			
kerosene	12	7		
diesel oil	17	23		
fuel oil	56	38		

i. Calculate the percentage demand for naphtha.

Percentage demand for naphtha = % [1]

ii. Suggest why fuel oil, rather than diesel oil, is cracked to obtain petrol.

[1]

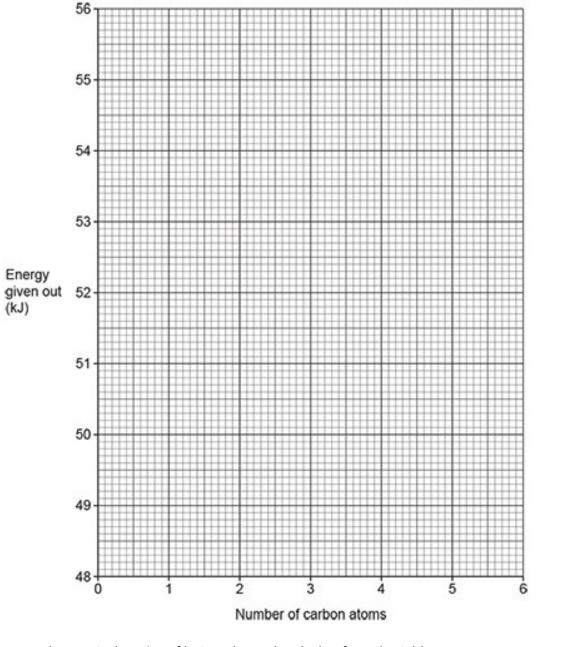
7(a). Propane, C₃H₈, is an alkane.

Propane undergoes complete combustion in oxygen. Carbon dioxide and water are made.

Write the **balanced symbol** equation for the complete combustion of propane.

[2]

(b). The table shows the energy given out when 1 g of different alkanes burn.


Alkane	Number of carbon atoms	Energy given out (kJ)
methane	1	55.6
ethane	2	52.6
propane	3	50.4
butane	4	
pentane	5	48.7
hexane	6	48.4

i. Plot a graph of the data from the table.

ii. Draw a curve of best fit on your graph.

[1]

[2]

iii. The energy given out when 1 g of butane burns is missing from the table.

Use the graph to estimate the energy given out by butane.

Energy given out by butane =kJ [1]

iv. What name is given to the type of reaction that gives out energy?

______**[1]**

(c). Complete the displayed formula of propane, C₃H₈.

[1]

8. Crude oil is a resource that is being made extremely slowly.

Which word describes a resource that is being made extremely slowly?

- A Finite
- **B** Hydrocarbon
- C Non-renewable
- **D** Petrochemical

Your answer [1]

9. What is the displayed formula of **ethanol**?

$$\mathbf{D} \qquad \mathbf{H} - \overset{\mathsf{H}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}{\overset{\mathsf{H}}{\overset{\mathsf{H}}{\overset{\mathsf{H}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}{\overset{\mathsf{H}}}}{\overset{\mathsf{H}}}{$$

Your answer [1]

10. Methane is a hydrocarbon.

Which su	bstance cann o	ot be produced when n	nethane burns ir	n air?	
B CaC Hy	arbon arbon dioxide adrogen ater				
Your ans	wer				[1]
11(a). The	e table shows	information about som	e compounds of	f carbon.	
Cor	npound	Formula			
	Α	CH ₄			
	В	C ₂ H ₄			
	С	C ₂ H ₆			
	D	C ₃ H ₆			
	E	C₃H ₈			
Tick (√) t		c series do the compour	D nds which are n	E ot alkanes belong to?	[3]
Alkenes					
Carboxyl	ic acids				
Esters					
(c). C ₂ H ₄	burns complet	ely in oxygen.			[1]
State the	names of the	two products of this re	eaction		
		-			[2]

(d). CH₄ is obtained from crude oil by fractional distillation.

Complete the sentences about fractional distillation. Use words from the list.

cracked	colder	condense	evaporate	
fractions	heated	hotter	polymers	

Crude oil is as it enters a fractionating column. The vapours get

...... to a liquid at different points.

The separated parts of crude oil are called

[4]

(e). Crude oil is a finite resource.

Explain what is meant by a **finite resource**.

[1]

12. Poly(chloroethene) is a polymer made from the monomer chloroethene.

This is the structure of chloroethene.

i. Explain why chloroethene is **not** a hydrocarbon.

[1]

ii. Complete the diagram to show the displayed formula of the polymer poly(chloroethene).

н сі

СС

н н

13. Large molecules produced by fractional distillation are cracked to make smaller molecules.

Octane, C_8H_{18} , is cracked to form ethene, C_2H_4 , and one other product.

What is the formula of the other product?

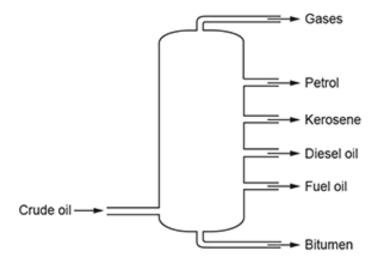
- A C_3H_6
- **B** C₆H₁₂
- **C** C₆H₁₄
- $\textbf{D} \quad C_8 H_{16}$

Your answer [1]

14. What is the displayed formula of propanoic acid?

Your answer [1]

15. DNA molecules are polymers made from monomers.


What are the monomers called?

- **A** Alkenes
- B Amino acids
- **C** Carbohydrates
- **D** Nucleotides

Your answer [1]

16. Crude oil is separated into useful chemicals by fractional distillation.

The diagram shows the useful chemicals made in fractional distillation.

Which of these chemicals has the largest molecules?

- B Diesel oil
- **C** Gases
- **D** Petrol

[1]

17. Bromine water is used to test between ethane and ethene.

	Ethane	Ethene		
Α	bromine water is decolourised	no colour change		
В	bromine water goes cloudy	bromine water is decolourised		
С	bromine water goes clear	no colour change		
D	no colour change	bromine water is decolourised		

Which	row	in	the	table	gives	the	correct	test	results?
* * ! !! 🔾 ! !	1011			LUDIU	91100		COLLOCE	LOOL	i oouito .

Your answer [1]

END OF QUESTION PAPER